Glyoxylate transamination in intact leaf peroxisomes.
نویسندگان
چکیده
Intact spinach (Spinacia oleracea L.) leaf peroxisomes were supplied with glycolate and one to three of the amino acids serine, glutamate, and alanine, and the amount of the respective alpha-keto acids formed in glyoxylate transamination was assayed. At 1 millimolar glycolate and 1 millimolar each of the three amino acids in combination, the transamination reaction reached saturation; reduction of either glycolate or amino acid concentration decreased the activity. The relative serine, glutamate, and alanine transamination at equal amino acid concentrations was roughly 40, 30, and 30%, respectively. The three amino acids exhibited mutual inhibition to one another in transamination due to the competition for the supply of glyoxylate. In addition to this competition for glyoxylate, competitive inhibition at the active site of enzymes occurred between glutamate and alanine, but not between serine and glutamate or alanine. Alteration of the relative concentrations of the three amino acids changed their relative transamination. Similar work was performed with intact oat (Avena sativa L.) leaf peroxisomes. At 1 millimolar of each of the three amino acids in combination, the relative serine, glutamate, and alanine transamination was roughly 60, 23, and 17%, respectively. Similarly, alteration of the relative concentration of the three amino acids changed their relative transamination. The contents of the three amino acids in leaf extracts were analyzed, and the relative contribution of the three amino acids in glycine production in photorespiration was assessed and discussed.
منابع مشابه
Compartmentation studies on spinach leaf peroxisomes : evidence for channeling of photorespiratory metabolites in peroxisomes devoid of intact boundary membrane.
In concurrence with earlier results, the following enzymes showed latency in intact spinach (Spinacia oleracea L.) leaf peroxisomes: malate dehydrogenase (89%), hydroxypyruvate reductase (85%), serine glyoxylate aminotransferase (75%), glutamate glyoxylate aminotransferase (41%), and catalase (70%). In contrast, glycolate oxidase was not latent. Aging of peroxisomes for several hours resulted i...
متن کاملIsolation of intact chloroplasts and other cell organelles from spinach leaf protoplasts.
Freshly prepared spinach leaf protoplasts were gently ruptured by mechanical shearing followed by sucrose density gradient centrifugation to separate constituent cell organelles. The isolation of intact Class I chloroplasts (d = 1.21) in high yield, well separated from peroxisomes and mitochondria, was evidenced by the specific localization of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)...
متن کاملPeroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana.
At least two glyoxylate aminotransferases are hypothesized to participate in the steps of photorespiration located in peroxisomes. Until recently, however, genes encoding these enzymes had not been identified. We describe the isolation and characterization of an alanine : glyoxylate aminotransferase (AGT1, formerly AGT) cDNA from Arabidopsis thaliana. Southern blot analysis confirmed that Arabi...
متن کاملMetabolism of Glycolate in Isolated Spinach Leaf Peroxisomes : KINETICS OF GLYOXYLATE, OXALATE, CARBON DIOXIDE, AND GLYCINE FORMATION.
The flow of glyoxylate derived from glycolate into various metabolic routes in the peroxisomes during photorespiration was assessed. Isolated spinach leaf peroxisomes were fed [(14)C] glycolate in the absence or presence of exogenous glutamate, and the formation of radioactive glyoxylate, CO(2), glycine, oxalate, and formate was monitored at time intervals. In the absence of glutamate, 80% of t...
متن کاملOrganelle-specific Isozymes of Aspartate-alpha-Ketoglutarate Transaminase in Spinach Leaves.
Four distinct isozymes of aspartate-alpha-ketoglutarate transaminase in a spinach (Spinacia oleracea L.) leaf extract were separated by starch gel electrophoresis. Of the total aspartate-alpha-ketoglutarate transaminase activity, approximately 45% was represented by the chloroplast isozyme, 26% by the cytosol isozyme, 19% by the mitochondrial isozyme, and 3 to 10% by the peroxisomal isozyme. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 75 1 شماره
صفحات -
تاریخ انتشار 1984